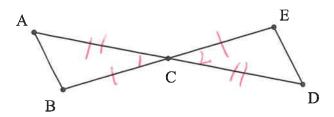
Geometry Worksheet

lame:		-	
) Given: $\overline{BD} \perp \overline{A}$		Statements	Reasons
$\overline{BC} \cong \overline{DC}$ Prove: $\angle A \cong \angle E$	$\begin{array}{c} 1. \overline{BO} \perp \overline{AB} \\ \hline 9 \overline{BC} \cong DT \end{array}$, BO L DE	1. given
A	2. KABC É anglos.	& CDE are right	2. Purpendicular lines cr right angles.
DE E	A 3. K ABC ≅		right angles. 3. All right th's are ≅ 4. All virtical th's are ≅
	Ø 4. ×1 ≈ ×	2_	4. All virtual x's are =
Thoughts:	5. DABC =	ACOE	5. ASA
	6. XA = X	E 50	6. CPCTC
diven: $\overline{BC} \cong \overline{DC}$,		Statements	Reasons
Prove: $\triangle ABC \cong \triangle ABC$	EDC	C, AL E EC	1. given
B	Et [02. ×1 =		2. All vertical angles are ≅.
ALT	\downarrow D 3. \triangle AB	C JEDC	3. 'S A S
Thoughts:			

1

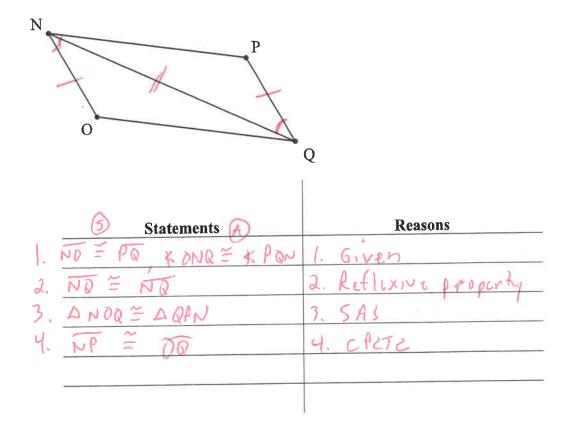
3) Given: $\overline{YA} \equiv \overline{BA}, \ \ \angle B \cong \ \angle Y$ Prove: $\overline{AZ} \cong \overline{AC}$ $\begin{array}{c} & & & \\ &$

4)	Given: $\overline{WX} \parallel \overline{YZ}, \overline{WX} \cong \overline{YZ}$	Statements	Reasons
- 7		WX II VZ WX Z YZ	1. given
	2 2 3.	$X I \cong X 2$ $\overline{ZX} \cong \overline{ZX}$ $\Delta W X Z \cong \Delta Y Z X$	2. farallel lines create = alt. interior angles 3. Reflexive property 4. SAS

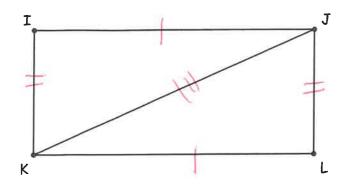

5)	Given: $\angle K \cong \angle M$, 1	is midpoint of \overline{KM}	Statements	Reasons
-	Prove: $\Delta JKL \cong \Delta PN$	1. KK= KM	, Lismizpoint of RM	l.given
	MP		2	2. A mid point divides a signant into 2 ≥ signants 3. All virtical &'s are = 4. ASA
	Thoughts:			

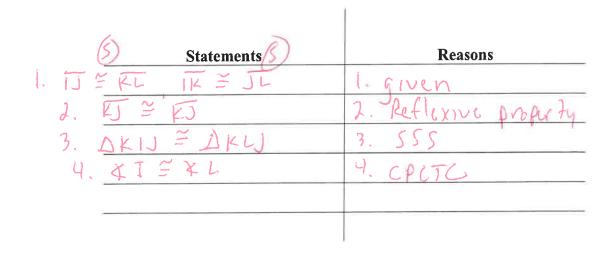
6) Given: $\angle B$ and $\angle D$ are right angles. \overline{AE} bisects \overline{BD} 1. $\angle 0$ $\angle \angle D$ are right angles. Prove: $\triangle ABC \cong \triangle EDC$ \overline{AE} bisects \overline{BD} 1. $\angle 0$ $\angle \angle D$ are right angle. \overline{AE} bisects \overline{BD} 1. $\angle 0$ $\angle \angle D$ are right angle. \overline{AE} bisects \overline{BD} 1. $\angle 0$ $\angle \angle D$ are right angle. \overline{AE} bisects \overline{BD} 2. A bisector divides a segment into $2 \cong$ segment \overline{MO} 2. A bisector divides a segment into $2 \cong$ segment \overline{MO} 2. A bisector $\angle D$ $\angle ABC \cong ABC \cong ABC \cong \angle DEE$ \overline{A} $\overline{ABC} \cong \angle DEE$ $\overline{ABC} \cong \angle DEE$ Thoughts: $\overline{5} \cdot \triangle ABC \cong \triangle EDC$ $\overline{5} \cdot ASA$

7)	Given: \overline{JM} bisects	$\angle J, \overline{JM} \perp \overline{KL}$	Statements	Reasons
,	Prove: $\Delta JMK \cong \Delta JI$			1. given
	J M	Ø∂ x1 =	x 2	2. A bisutor divides an angle into 2 = K's.
	J.	3. KJuk i 6 right ang	*JML are	3. Arpondicular lines create right x's.
	Thoughts:	04. KJMK Z	KJML	4. All right angles fre Z.
		Ø 5. JM ≅ JI 6. DJMK ≅		5. Reflixing property 6. ASA


 $\boldsymbol{\aleph}$. Directions: write a two column proof:

Given: C is the midpoint of \overline{AD} and C is the midpoint of \overline{EB} . Prove: $\angle A \cong \angle D$




Statements	Reasons
1. Cismidpoint AD	(. Given
2. AC = CD BC = CE	2. A midpoint druides a sigment into
	$\lambda \equiv signardr.$
3. *1 = *2	3. Vertical angles are =.
4. DABE & DDEC	4. SAS
5. <u>4</u> A = X J	5. CPUTC

q Given: $\overline{NO} \cong \overline{PQ}$ and $\angle ONQ \cong \angle PQN$. Prove: $\overline{NP} \cong \overline{OQ}$

 $\begin{array}{l} [0] . \quad \text{Given: } \overline{IJ} \cong \overline{KL}, \ \overline{IK} \cong \overline{JL} \\ \text{Prove: } \angle I \cong \angle L \end{array}$

